1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
def gcd(a, b): while b != 0: (a,b) = (b, a%b) return a
def factorize(n, wheel=3): if n < 2: return [] primes = (2, 3, 5, 7, 11) if wheel < 2 or wheel > len(primes): wheel = 3 primes = primes[:wheel] q = [] for p in primes: if n % p != 0: continue e = 1 n //= p while n % p == 0: n //= p e += 1 q.append((p, e)) if n > 1: m = reduce(lambda x, y:x*y, primes, 1) offs = [x for x in xrange(2, m + 1) if gcd(m, x) == 1] + [m + 1] k, done = 0, False while n > 1: for offset in offs: p = k + offset if p ** 2 > n: done = True break if n % p != 0: continue e = 1 n //= p while n % p == 0: n //= p e += 1 q.append((p, e)) if done: break k += m if n > 1: q.append((n, 1)) return q
def Euler(n, wheel=3): ''' Euler Totient Function of n using a prime wheel criterion. It's almost as fast as the phi(n, p) function ''' if n < 2: return n q = factorize(n, wheel) r = 1 for (p, e) in q: r *= (p - 1) * (p ** (e - 1)) return r
def primitive_root(mod): simple = [] root = [] phi_m = Euler(mod) for i in range(1,mod): if gcd(i, mod) == 1: simple.append(i) for a in simple: for j in range(1,phi_m+1): if a ** j % mod == 1: if j == phi_m: root.append(a) else: break
return root
if __name__ == '__main__': mod = raw_input('Please input mod:') print primitive_root(int(mod))
|